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We consider an aggregative model of intertemporal allocation under un- 
certainty, in which the utility and production functions are allowed to be 
time dependent, the random shocks occurring in each period are entirely 
arbitrary, and the production functions are permitted to be non-concave. In this 
framework, we provide a theorem on the existence of infinite-horizon optimal 
processes. In the course of establishing this result, we obtain the existence of 
optimal policy functions and we show that they are monotone in the stock 
levels. 

1. Introduction 

The main purpose of this paper is to provide a general theorem 
establishing the existence of  optimal processes for an aggregative 
stochastic growth model. We also provide some monotonicity results 
for optimal processes in the context of this model. In our framework the 
utility and production functions are allowed to be time dependent, and 
the random shocks occurring in each period are entirely arbitrary, so, 
in particular, we do not assume that they be independent or identically 
distributed. We impose no concavity assumptions on the production 
functions but we do require the utility function at each date to be 
concave. 

The existence theorem provided in this paper is one of the most 
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general in the literature for the aggregative stochastic growth model 
considered here. Many authors have concentrated on the "stationary 
case," where the utility function at date t is given by ut ( . )  = 6 tu( . )  
(where u is a period utility function, and 0 < 6 < 1 is a discount 
factor), the production function is time invariant, and the random shocks 
to production are independent and identically distributed (see, for 
example, Brock and Mirman, 1972). The existence theorems for such 
models may be obtained by appealing to the dynamic programming 
arguments of Blackwell (1965) and Maitra (1968). The latter, however, 
for the aggregative stochastic growth model we consider, are special 
cases of the results proved in this paper. 

For the nonstationary model, the closest existence theorem to the 
one presented in this paper is that of Bhattacharya and Majumdar 
(1981). Their result does allow for a more general set of models (that is, 
models other than the aggregative stochastic growth model); however, it 
depends critically on the convexity of the feasible set, which we do not 
require. Assumptions of convexity of feasible sets excludes a number 
of models that economists use and recently nonconvexities in feasible 
sets have received a great deal of attention, particularly in the natural 
resources literature (see, for example, Mirman and Spulber, 1982). 

Another technique used in obtaining existence theorems is to endow 
the space containing the feasible set with an appropriate topology, and 
then to show that the feasible set is non-empty and compact and the 
objective function is upper-semicontinuous in that topology; and finally 
use the fact that an upper-semicontinuous function attains its maximum 
on a non-empty compact set. This approach has been used for the 
deterministic model by Majumdar (1975) and, for the stochastic model 
with a slightly different set of assumptions, by Chichilnisky (1981). It 
is possible to use such an approach for our model, too; however, there 
are a number of side-benefits from the method we use. In the course 
of our proof, we obtain the existence of optimal policy functions and 
we show that they are monotone. Further, our proof is constructive; we 
first show that finite-horizon optimal processes exist, then identify the 
limit of these processes as the optimal process for the infinite-horizon 
model. 

The organization of this paper may be summarized as follows. 
In Section 2, we formally present the model and define feasible and 
optimal processes. In Section 3, we discuss the finite-horizon model. 
We prove that finite-horizon optimal processes exist, and that they 
may be obtained using optimal policy functions, which are functions 
of the beginning of period stock level and the partial history of the 
random shocks. We then indicate that these optimal policy functions 
are monotone in the beginning of period stock. In Proposition 3.1, we 
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provide a set of assumptions under which the optimal policy functions 
are semi-Markovian. In Section 4, we discuss the infinite-horizon 
model. We show that the limit of the finite-horizon optimal processes 
is optimal for the infinite-horizon model, and that the optimal process 
may be obtained using optimal policy functions which are monotone. 
In Theorem 4.4, we provide a condition under which the optimal policy 
function is stationary. Proofs of all results can be found in Section 5. 
Section 6 contains a technical appendix. 

1. The Model 

a) The Environment 

The environment is represented by the probability space (f2, F, P )  
with the following interpretations: 
(i) f~ = X~-o f~t where f~t is the set of possible states of the environ- 

ment at date t; rt E f~t denotes the state at date t. We assume that 
f~t is a compact metric space and we let Ct be its Borel field. 

(ii) F is the sigma field on f~ induced by cylinder sets; that is, sets of 
the form X~= o At where At E Ct for all t and At = f~t for all but 
finitely many t. 

(iii) P is the probability on (f~, F)  of the set of sequences of states of 
the environment. 

We denote the partial history of the environment at date t (t -- 
t 0 ,1 , . . . )  by ht = ( r o , r l , . . . , r t )  E Xi=0f~i. We denote by Ft the 

sub-sigma field of F induced by the partial history at date t; in 
particular, Ft is induced by cylinder sets of the form X ~ 0  Ai, where 
A~ -- f~ for all i > t. 

b) The Technology, Feasible Processes, and Policy Functions 

The technology is represented by the sequence of production func- 
tions {ft}t~=o where for each t, f t  : IR+ x ~~t+l ---+ JR+; if the 
investment at date t is xt and the state of the environment at date t + 1 
is rt+l, then the date t + 1 output is Yt+l = f t(xt ,  rt+l). We impose 
the following assumptions on the technology: for each t = 0, 1 , . . .  

(T.1) 
(T.2) 

f t  is continuous on IR+ • ~t+l .  
f t(x,  rt+l)  is nondecreasing in x for each fixed rt+l E ~t+l. 

Remark: For t > 1, rt is important for two reasons. First, it determines 
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the date t output from date t - 1 input via the production function f t -1;  
second, rt may help predict the values of {rt+l,  r t+2 , . . . } .  The value 
of r0, however, is important only in predicting values of {r l ,  r 2 , . . . } .  
If the {rt }t~=o process were independent, then ro would be irrelevant. 

The pure accumulation process from initial stock y > 0 at date 7-, 
denoted by {k t } t~ - ,  is defined inductively by 

k~ = y and kt+l = f t ( k t , r t+ l )  for t = 7-,7- + 1, . . . .  (2.1) 

For t = 0, 1, . . . .  define j~ : IR+ -+ IR+ by j~(x) = max{ f t ( x ,  r t+ l )  : 
rt+l E f~t+l}. Since f t  is continuous in its arguments and f t t+l  is 
assumed compact, f t  is well-defined. The pure accumulation sequence 

{kt}t=.c, is defined from initial stock y >_ 0 at date % denoted by - 
inductively by 

k~- = y and kt+l = f t (k t )  for t = 7-, 7- + 1, . . . .  (2.2) 

In specifying the finite-horizon model we require the tuple e = 
(y, ho, b ,T)  where y _ 0 is the initial stock, h0 E ft0 is the initial 
history, b is the (possibly random) terminal stock and T = 0, 1 , . . .  is the 
time horizon. We denote by M r  the set of non-negative FT-measurable 
random variables; M T  is the set of possible terminal stocks for the 
T-horizon model. 

Fix a time horizon T = 0,1,  . . . .  a date t = 0 , 1 , . . . , T  and a 
terminal stock b E M r .  We say that the terminal stock, b, can be 

t reached from the initial stock-history pair (y, ht) E IR+ x Xi= 0 f2i at 
date t if, when we denote by {ki}ic~=t the pure accumulation process 
from initial stock y at date t [defined in (2.1)1, P(kT  >_ b I hi) = 1. 
The tuple e = (y, hi, b, T)  is a date t admissible tuple if the terminal 
stock, b, can be reached from the initial stock-history pair (if, ht) at 
date t. A date 0 admissible tuple will be called simply an admissible 
tuple. Given any date t admissible tuple e = (y, hi, b, T)  we define 

T Ft (!I, ht, b) = 

{x E [0, y] I b can be reached from (x, ht) at date t} . (2.3) 

Note that if (y, ht, b, T)  is a date t admissible tuple then T r t (y, ht, b) 
contains y and is therefore not empty. 

Let e = (y, h~-,b,T) be a date 7- admissible tuple (where T = 
0, 1,. and 7- = 0, 1 , . . . ,  T). The process {xt ,  T . .  Ct, Yt } t=T is e-feasible, 
if  for each t = 7- + 1 , . . . ,  T,  

xt and ct are Ft-measurable random variables ; (2.4) 
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c t + x t = y t = f t - l ( X t - l , r t ) ;  P ( c t > 0 ,  x t > 0 ] h ~ - ) = l ;  (2.5) 

y~- = y; c~- E JR+, x~- E JR+ and c~- + x~- = y~- ; 

and 

P(XT > b] hr) = 1 . (2.6) 

The process { xt , ct , yt } t~=o is feasible for  the infinite-horizon model 
from the initial stock-history pair (y, h~-) at date "r if (2.4) and (2.5) 
hold for each t > ~-. We shall refer to the processes {xt} ,  {et}, and 
{Yt} as the investment (or input), consumption, and output (or stock) 
processes, respectively. 

If {xt ,  et, Yt}~=.~ (T  <_ oc) is any feasible process (for either the 
finite- or the infinite-horizon model) from the initial stock-history pair 
(y, h~-) at date ~-, then for each t = 7-, ~- + 1 . . . . .  P(x t  <_ kt < [~t, 
ct <_ kt <_ kt and Yt <_ kt _< kt ] h~-) = 1 where the processes {kt}~=~_ 
and - { kt }t=~- are defined from initial stock y using (2.1) and (2.2) above, 
respectively. 

Fix a T = 0, 1 , . . . ,  ~ ,  and a ~- = 0, 1 , . . . ,  T (with ~- < cx~). The set 
of functions T t {IIt}t=.r where for each t, 1-it : JR+ • Xi= o f2i ---+ JR+ and 
IIt(y, .) < y generates a unique process {xt,  T 

_ ct, Yt}t=-~ from the initial 
stock-history pair (y~-, h~-) at date "r as follows: set x~- = IL(y~-, h~-), 
cr = y.r-x.~ and given any ( xt ,  ct , Yt) for t > 7- set Yt + l = f t( xt , r t+l) ,  
Xt+l = IIt+l(yt+l,  ht+l) and Ct+l = Yt+~ - Xt+l. 

Recall that if T is any finite horizon, MT is the set of possible 
terminal stocks for the T-horizon model. For any date t < T we define 

D T = { ( y , h ~ , b )  E JR+ • 2 1 5  

(y, ht, b, T) is a date t admissible tuple} . (2.7) 

Let {dT}T  0 be a set of functions such that d T : D T ~ IR+. We 
may consider d~ a function on ]R+ • X~= o f~i • MT by setting d T 
equal to some arbitrary constant outside of D T. The set of functions 
{dT}T=0 is a set of  policy functions for the T-horizon model if for 
any admissible tuple e = (y, ho, b, T) the set of functions {dT( ., b)}T=0 
generates an e-feasible process from (y, h0) at date 0. 

c) Preferences, Optimal Processes and Optimal Policy Functions 

Preferences are represented by the sequence of utility functions 
{ut}t~=o where for each t, ut : ]R+ -+ IR+ and ut(c) is the utility 
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obtained from the consumption of c ___ 0 at date t. We assume that for 
each t = 0, 1 , . . .  

(u.1) 
(u.2) 
(u.3) 

ut is continuous on IR+; 
ut is monotone nondecreasing on IR+; 
ut is concave on ]R+. 

Let e = (y, h~-, b, T) be a date 7- admissible tuple. An e-feasible 
X *  ~* ~ * I T  process { t ,  ct, Yt ]t=~- is e-optimal if for every e-feasible process 

T , {Xt, et, Yt}t=.r 

T T 

(2.8) 

A process {x~, c~, y~ } ~ .  is optimal for the infinite-horizon model from 
the initial stock-history pair (y, h~-) at date r if it is feasible and if for 
any other process {xt ,  ct, Yt}t~ feasible from (y, h~-) at date ~-, 

N 

lim sup E [ E ( u t ( c t )  - ut(e~)) [ hr] < O . 
N - - * c ~  t = ~ -  

(2.9) 

Recall that policy functions, and how they generate feasible processes, 
were discussed in Section 2.b). Fix a time horizon, T < ec. The set 
of policy functions {dT}T=0 is a set o f  optimal policy functions if for 
each date 7- admissible tuple e = (V, h~-, b, T) (~- < T), the functions 

T T {d t (., b))t= ~_ generate an e-optimal process from (y, h~-) at date T. For 
the infinite-horizon model a set of optimal policy functions, {d~  }t~0, 
is analogously defined. 

3. The Finite-Horizon Model 

In this section we show that finite-horizon optimal processes and 
policy functions exist and that they may be chosen so as to have certain 
monotonicity properties. 

Lemma 3.1." Fix a finite time horizon T. Then there exist functions 
{wT}T= o and T T D T ---* JR+ and 9T D T ~ IR+ {9t }t=o, where W T : 
for t = 0 , . . . ,  T, such that 
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(i) WT(y,  hT, b) = maxxerrr(y,h ,,b) UT(y -- X). 

(ii) WT(y,  ht, b) -= 
maXx~rT(u,h~,b) {ut(y - x) + E[WTl ( f t ( x ,  r t+l) ,  ht+l,  b) I ht]}, 
f o r t  = 0 , . . . , T -  1. 

(iii) gTT(y , hT,b) solves the maximization problem in (i) and is the 
infimum of the set of solutions to this problem. 

(iv) For t = 0 , . . . ,  T -  1, gT(y, ht, b) solves the maximization problem 
in (ii) and is the infimum of the set of solutions to this problem. 

Theorem 3.1 (Existence): 
Fix a finite time horizon T. Then the functions T T {gt }t=0 obtained in 
Lemma 3.1 constitute a set of  optimal policy functions. Thus, given any 
admissible tuple e = (y, ho, b, T), the process {xt, ct, Yt }T=o generated 
by the functions { 9 T } T  o is e-optimal. 

Theorem 3.2 (Monotonicity of Optimal Policy Functions): 
Fix a finite time horizon, T, and a date t < T. Let e = (y, ht, b, T) and 
e ~ = (y~, ht, U, T) be two date t admissible tuples such that y >_ y~ and 

T t T T P(b >_ b' I ht) = 1. Then 9T(y, ht, b) >_ 9~ (Y , ht, b'), where {gt }t=o 
is the set of functions obtained in Lemma 3.1. 

Before stating the next results, we introduce a definition. 
Let e = (y, h0, b, T) be an admissible tuple. If {xt, ct,Yt}t=oT is an 

e-optimal process, and for every e-optimal process ~ ~ ~ T {xt, et, Yt}t=0, we 
have P(xt  < x~ I h0) = 1 for t = 0, 1 , . . . ,  T, then {xt, et, Vt}Tt-_O is 
called the SCI-e-optimal process. (Here SCI denotes "smallest capital 
input".) If {xt, et, T Yt}t=o is the SCI-e-optimal process, and {9tT}t=oT 

T is a set of optimal policy functions which generates {xt, et, Yt}t=o for 
{9t }t=o is the set of SCI-optimal policy every admissible tuple e, then T T 

functions. 

Corollary 3.1 (SCI Optimal Process and Policies): 
T Let e = (y, ho, b,T) be an admissible tuple and let {x~, et, Yt}t=o be 

the e-optimal process generated by the functions T T {9t }t=o obtained 
T in Lemma 3.1. Then {xt, et, fft}t=o is the SCI-e-optimal process, and 

T T {gt }t=o is the set of  SCI-optimal policy functions. 

An immediate consequence of  Theorem 3.2 is the monotonicity of 
SCI-optimal processes with respect to the initial and terminal stocks. 
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Corollary 3.2 (Monotonicity of  SCI Optimal Processes). 
Let e = (y, h0, b, T) and e' = (y', h0, b ~, T) be two admissible tuples 

T with y >_ y' and P(b > b' I h0) = 1. Let {xt ,e t ,  yt}t=o and 
X t _ t  ~ t l T  { t, be the SCI-e- and SCI-e~-optimal processes, respective- c t  ~ Yt ] t = O  

ly. Then for each t = O, 1, . . . , T,  P (x t  >_ x ~ [ ho) = 1. 

We now obtain a monotonicity result for SCI-optimal processes as 
we vary the time-horizon. 

Corollary 3.3 (Monotonicity of  SCI-optimal processes in T): 
Fix a y _> 0 and a finite time horizon T and let e = (y, ho,O,T) and 
e' = (y, ho, O,T + 1). Denote by {xt,ct,yt}Tt_O and ~x' c' o'XT+I �9 L t~ t ~ t I t J t = 0  

the SCI-e- and SCI-el-optimal processes, respectively. Then for each 
t = 0 r . . - ,  T, P(x~ <_ x~ I ho) = 1. 

At any date t, the history ht plays two roles in the finite-horizon 
model: first, it helps predict {rt+ 1~ r t+2, . . .  }, and second it may, in part, 
determine what the terminal stock will be at the last period, date T. 
The following condition denies ht such roles. 

Condition I: The process {rt}T=0 is independent (but not necessarily 
identically distributed) and the terminal stock b is a constant (that is, a 
degenerate random). 

In Proposition 3.1 below, we show that under Condition I, SCI-op- 
timal policy functions are independent of history hr. Note, however, 
that SCI-optimal policy functions may still be dependent on the date t. 
A set of policy functions { d ~ } L 0  shall be called Semi-Markov if for 
each t, T d t (y, h~, b) is independent of the history hr. 

Proposition 3.1 (Semi Markov Optimal Policy Functions)." 
Under condition I, the set of SCI-optimal policy functions is Semi-Mar- 
kov. 

4. The Infinite-Horizon Model 

In this section we show that the limit of SCI-(y, h0, 0, T) optimal 
processes, as the horizon T tends to infinity, is an optimal process for 
the infinite-horizon model under a joint restriction on the technology 
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and preferences (see condition E below). The optimal process may be 
generated by a set of optimal policy functions which have a monotonic- 
ity property (see Theorem 4.2 below). Under stationarity assumptions 
on the {rt}t~=o process and the production and utility functions (see 
condition S below), we show in Theorem 4.4 that these optimal policy 
functions are stationary (that is, independent of the history and the 
date). 

Fix an initial stock-history pair (y, h0) and for each T = 0, 1, . . . .  
let e T = ( y ,  h o ,  0 ,  T )  and let {xt T, e T ~ T 1 T  t ,  Yt h=o  be the SCI-eT-optimal 

~ Z , process. The limit process from (g, ho), denoted by {xt,  ct, Yt}t=O is 
defined by setting Y0 = Y, :~t = l i m r ~  x T for all t, and defining 
{St, zjt}~_-o from {Jct}~=o in the obvious manner [that is, using (2.5) 
above]. Let - {kt}t=0 be the pure accumulation sequence from initial 
stock y at date 0 [defined via (2.2)]. Then from Corollary 3.3, for 
each T and t, x T _< xt T+x _< kt so :~t = limT--+~ x T is well-defined. 

r T 1 T  , Recall that we obtained SCI-optimal policy functions, t9t h=o 
in Corollary 3.1. Define the functions {9/o}t~ where for each t, 
9t~ : II%+ x X~=of~i --+ IR+ by gtC~(ff, ht) = limT__+~ 9tT(ff, ht, 0); 
it is clear that the set of functions {g/~ }t~__0 generate the limit process, 
and they will be called the limit SCI policy functions. 

Condition E: Given any initial stock-history pair (y, h0), there exists a 
process {x~, c~, ff~}~o feasible from (y, h0) such that if {k t}~0  is the 
pure accumulation process [defined in (2.1)] from the initial stock y at 
date 0, then 

N 

lim E [ E ( u t ( k t  ) - ut(c't)) l ho] < o o .  
N----~ oc 

t = 0  

Theorem 4.1 (Existence): 
Fix an initial stock-history pair (y, ho). Under condition E the limit pro- 
cess from (y, h0) is optimal from (y, h0) for the infinite-horizon model 
and may be generated by the limit SCI policy functions, {9/O }t~o. 

Remarks: 
(i) Condition E holds when the utility function is of the form 

ut(') = 6tu(') with 0 < 5 < 1 and either u(.) is bounded above, or 
there exists a maximum sustainable stock (that is, there exists K > 0 
such that for all t, f t (x ,  r t+ l )  < x for all x >_ K and rt+l E f~t+l). 
The latter is used in Brock and Mirman (1972). 
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(ii) In the exis tence theorem of  Bhat tacharya  and Ma jumdar  (1981) 
the assumpt ion  ~-~t~o u t ( E k t )  < o~ is used, which  ensures  Condi t ion E 
above,  since the concavi ty  of  the utility funct ion implies  E u t ( k t )  < 
u t ( E k t )  for  all t, by  Jensen ' s  inequality.  However ,  there are models  
where  E ~ ~--~t=0 ut (k t )  = cxD (and hence ~-~t=0 u t ( E k t )  = cx~) and yet  
Condi t ion E holds. For  example ,  let f t ( x ,  r t + l )  = px  for  some  19 > 1, 
ut(c) = c/(1 + c) and y = 1. Then  kt = pt, and p t / (1  + pt) ~ 1 

O0 
as t ~ oc so ~-~t=0 Ut(kt) = ~-'~t=o~ p t / (  1 + pt) = co. However ,  

we  m a y  consider  a process  {Xt, Ct, Yt}t~ induct ively by  defining 

a = (1/2)[1 + ( l / p ) ] ,  V0 = 1, and for  t >_ O, Vt+l = p a y ,  z t  = ayt,  
ct = (1 - a ) y t .  Since 0 < a < 1, it is clear  that {x t ,  ct, Yt}t~ is feasible  
f rom V = 1. Note  that for  each  t, Vt = (Pa) t so ct = (1 - a)(pa) t and 
therefore 

[ a z  1 
E [ut(kt) --Ut(Ct)] <-- E 1 1 + Ct -- Ct 1 - a  (pa) t " 

t t t 

(4.1) 

Since (pa) > 1 the summat ion  on the r ight-hand side o f  (4.1) is finite 
so condit ion E holds. 

(iii) Without  Condi t ion E there m a y  not exist  an opt imal  process.  
As an example  one m a y  consider  the "cake-ea t ing"  mode l  o f  Gale  
(1967). Let  f t ( x ,  r t + l )  = x,  ut(c) = c/(1 + c) and y = 1. Then  kt = 1 
for  all t, and 

oo  (x3 

E [ u t ( k t )  - ut(ct)] = E [ ( 1 / 2 )  - {c t / (1  + ct)}] , 
t = O  t = O  

so if  Condi t ion E holds,  [(1/2) - {c t / (1  + ct)}] --+ 0 and ct --~ 1 as 
t --* o~; hence,  using ct <_ yt = x t - 1  _< 1, we  obtain xt  --~ 1 as t --~ oo. 
But  then ct = yt - x t  = x t - 1  - x t  ~ 0 as t --~ c~, a contradict ion 
to ct ~ 1 as t ---* oo so condit ion E does  not hold. Also there is 

X *  * * oo  no opt imal  process,  for  if  { t ,  ct,  Yt }t=o is opt imal ,  then for  some  ~-, 
c~. > 0 and one m a y  construct  an al ternative process  ( x t ,  ct, Yt}t=o as 
fol lows:  ( x t ,Y t ,  Ct) = ( x t , c t , y  t )  for  t < ~- and t > ~ - +  1; y~- ---- y~_, 

�9 One c ,  = c~-+l = (c* + c*+1) /2 ,  x r  = Yr+I = Yr - c~-, Xr+ l  = x~-+l. 
m a y  check that {x t ,  ct,yt}t~=o is feasible.  Using the strict concavi ty  
o f  the utility function, one m a y  check that the process  {x t ,  ct, Yt}t~o 
dominates  {x~,c~,  Y~'}~0 [that i s ,  (2.9) fails] which  contradicts  the 
opt imal i ty  of  {x~, c~', y~ }t~0. 

We now state a monotonic i ty  result  for  the infini te-horizon opt imal  
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processes and policy functions obtained in Theorem 4.1. This is an 
immediate consequence of Theorem 3.2 and Corollary 3.2. 

Theorem 4.2 (Monotonicity of Limit SCI Policy Functions and Pro- 
cesses): 
Fix a y and yl with y >_ yl > 0. Then for each date t = 0, 1, . . . .  and 
partial history ht, 9t (Y, ht) > ~ t - gt (Y ,ht). Further, if  {xt,ct,Yt}t=o 

X 1 I t and { t, ct, Yt }~=o are the limit SCI processes from initial stock-history 
I h (y, h0) and (y ,  0), respectively, then P(xt  _> x~ ] h0) = 1 for each t. 

Remark: 
A similar monotonicity result has been obtained by Dechert and Nishi- 
mura (1983) for the deterministic and stationary model (that is, where 
condition S below holds), and by Majumdar, Mitra, and Nyarko (1989) 
for the stochastic and stationary model. 

Recall that we showed in Proposition 3.1 that if the {rt}t~=o process 
is independent (but not necessarily identically distributed), and the 
terminal stock is a constant, then the SCI-optimal policy functions, 

T 1 T  , gt h : 0  are Semi-Markov (that is, independent of the history, ht). 
From the definition of gt~, we therefore obtain the following result. 

Theorem 4.3 (Semi-Markov Policy Functions): 
Suppose that the process {rt}t~o is independent (but not necessarily 
identically distributed). Then the limit SCI policy functions {g~}t~0 
are Semi-Markov; that is, the functions g~(y ,  ht) are independent of 
the history, hr. 

Condition S." The process {rt}t~176 is independent and identically dis- 
tributed; the utility functions are of the form ut(c) = 5tu(c), where 
0 < 5 < l ; a n d f t = f f o r a l l t .  

We now show that under condition S, the limit SCI policy functions, 
{g~}t~0, are independent of both the history, ht, and the date, t. 
Following the terminology of Blackwell (1965) and Maitra (1968), we 
call such policy functions stationary (or Markov). 

Theorem 4.4 (Stationary Optimal Policies): 
Under condition S, the limit SCI policy functions, {g~}t~=o, are 
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stationary. That is, the functions g~(Y, ht) are independent of both 
the partial history, ht, and the date t, and we may write for each t, 

OQ gt (Y, ht) = g~(y)  for some g ~ : IR+ --+ 1R+. 

5. Proofs 

We provide, in this section, the proofs of the results stated in 
Sections 3 and 4. 

Proof of Lemma 3.1: 

Fix a T = 0 , 1 , . . .  and recall that for t = 0 , 1 , . . . , T ,  Ft T and 
Dt  T are defined in (2.3) and (2.7) above, respectively. We define the 
functions {WtY}tY=0 where Wt T : D ~  ~ IR+ by backward induction 
as follows: 

WT~(y, hT, b) = max u:r(y - x) (5.1) 
x6 FT (y,h,r ,b) 

and given Wt~l for any t = 0, 1 , . . . ,  T - 1, 

wtT (y, ht, b) = 

max {ut(y - x) + E [ W ~ l ( f t ( x  , r t+l) ,  ht+l, b) I ht]} . 
x6FTt (y,ht,b) 

(5.2) 

T Note that if x e F t (y, ht, b) then P[(ft(x, rt+l), ht+l, b) e DTt+~ I 
ht] = 1 so the maximization in (5.2) is well defined. 

In the Claim below we show that solutions to (5.1) and (5.2) exist. 
Denote by 9Yt(y, ht, b) the infimum of  the set of  solutions to (5.2) 
[or (5.1) if t = T]; the Claim shows that gt T is a solution that 
satisfies certain measurability properties. Recall that Ft is the sigma 
field generated by the partial history ht; we shall sometimes write 
Ft-measurable random variables as y(ht) to emphasize this fact (see 
Chung, 1974, Lemma 9.1.2, p. 279, for more on this). 

Claim: Fix a finite-horizon, T,  and a t = 0, . . . ,  T. Then 

(a) there exists a function 9~ : DT --+ I1%+ such that for all (g, ht, b) 6 
DTt, 9Tt(g, ht, b) is the infimum of the set of solutions, and is itself 
a solution, to the maximization problem defining wtT(y, ht, b). 

T (b) WtT(y, ht, b) is continuous in y for fixed (ht, b) C Xi=ofti x MT. 
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(c) Fix a terminal stock b C MT. If y(ht) is any uniformly bounded 
Ft-measurable random variable such that (y(ht), ht, b) E DTt for 
all ht E Xt_ofli then T 9t (y(ht), ht, b) and wtT (y(ht), ht, b) are 
Ft-measurable random variables. 

Proof of the Claim: It is useful to consider the terminal stock, b, as fixed 
throughout this proof. The proof amounts to checking, by backward 
induction, that conditions of the Measurable Selection Theorem of 
Furukawa hold (see Lemma A. 1 of the appendix); this will prove parts 
of (a) and (c) of the claim. We then prove (b) by invoking the Maximum 
Theorem (see Berge, 1963, p. 116). 

For any Y > 0 and t = 0, 1 , . . . ,  T, l e t  DTt 'v = {(y, ht, b) E D T [ 
y _< Y}. It is clear that if for any fixed t, the claim holds when we 

restrict the domain of W T to D T'v, with Y arbitrary, then the claim 
holds when the domain of W ~  is D T. 

We seek to use Lemma A. 1 in the appendix. First, consider the case 
T where t = T. To apply Lemma A.1, fix a Y > 0 and set S = Xi=0f~ 

and A = [0, Y]. Let y(ht) be as in part (c) of the Claim [which clearly 
includes the case where y(ht) is some constant y] with y(hT) <_ Y for 
all hT. Then for s = hT E S set A(s) = F~(y(hT), hT, b), and for 
(s, a) = (hT, x) E S x A set H(s, a) = UT(y(hT) -- X). 

Given these definitions we now verify that conditions ( i)-( iv)  of 
Lemma A.1 hold: (i) follows from Lemmas A.2 and A.3 (b) of the 
appendix; (ii) follows from the Fr-measurabili ty of y(hT) and the 
continuity (hence, measurability) of ur; (iii) follows from continuity 
of ur; and (iv) follows from the fact that y(hT) and x are restricted to 
lie in [0, Y] and the fact that UT is continuous. 

Hence, we may apply Lemma A.1 to show that for t = T, 
(a) and (c) of the Claim hold. To show that (b) holds observe that 
the objective function u T ( y -  x) is continuous in (y, x); also from 
Lemma A.3 (a) of the appendix, the constraint set F~(y,  hT, b) is a 
continuous correspondence in y. Part (b) of the claim then follows 
from the Maximum Theorem (see Berge, 1963, p. 116). Hence, the 

= F) T , Y .  claim holds for t T when the domain of definition of W f  is ~ T  , 
since Y > 0 is arbitrary, the claim holds for t = T. 

Next let ~- = 0, 1 , . . . ,  T -  1 and assume that the claim holds for t = 
r + 1. We proceed to show that the claim holds for t = ~-. The proof is 
very similar to that above for t = T, where now in applying Lemma A. 1 
we set, for fixed Y > 0, A = [0, Y], S = X[=of~i and given y(hr) as 
in part (c) of the claim with y(hr) <_ Y for all h~-, and s = h~- E S, 
set A(s) = P~(g(hr),h,-, b); and for (s, a) = (h~-,x) C S • A set 
H(s, a) = u.~(y(h~) - x) + E[W~+I(f~-(x , rr+~), hr+~, b) ] hr]. One 
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now uses the induction hypothesis (that is, the fact that the claim holds 
for t = 7- + 1) to mimic the steps used in proving the claim for t = T 
above to show that Lemma A. 1 holds and that the claim holds for t = T. 

Q.E.D. 

Proof of  Theorem 3.1: 

The theorem is established by verifying two claims. 

Claim 1: The functions {gT)~= 0 obtained in Lemma 3.1 constitute a 
set of  policy functions. 

Proof of  Claim 1: Let e = (y, ho, b,T) be an admissible tuple and let 
{Xt~ T Ct, Yt}t=O be the process generated by the functions {gT(., b)}T=0 
from (y, h0) at date 0. We need to show that {xt, ct, yt }T=0 is e-feasible; 
that is, (2 .4) -  (2.6) hold. 

Now (x0, co, Y0) may be considered constants (given a ho); if for 
t = O, 1, . . . .  (xt, ct, Yt) are Ft-measurable then Yt+l = f t(xt ,  r t+ l )  is 
Ft+x-measurable (from the continuity of f t)  so from part (c) of  the 
claim established in the proof of  Lemma 3.1, xt+l = gT(yt+l, ht+l, b) 
(and hence Ct+l = Yt+l - X t + l )  is Ft+l-measurable.  Therefore, 
(2.4) holds for all t. Next, to show (2.5) we need show only that 
for all t, P(ct = y t - x t  _> 0 I h0) = 1, the rest following by 
construction; but this follows from the definition of F T and the fact 
that P(xt  E FT(yt, ht,b) I h0) = 1. Finally, (2.6) follows from 
P(XT C FTT(yT, hT, b) I h0) = 1. This establishes Claim 1. 

We now show, in Claim 2 below, that the functions {gT}T= 0 
are a set of optimal policy functions. Further, the claim justifies the 
interpretation of WT(y,  ht, b) obtained in Lemma 3.1 as the value of 
continuing the T-horizon model with terminal stock b from the initial 
stock-history pair (y, ht) at date t. 

Claim 2: Let e = (y ,h~ ,b ,T)  be a date "r admissible tuple and 
let {xt, T ct,Yt}t= z be the process generated by the policy functions 

T T {9t }t=~- from the initial stock-history pair (y, hT) at date 7-. If 
X t ~ t  ~ t l T  { t ,  c t ,  gt.rt=-r is any other e-feasible process then 

T T 

E[Zu,(e,)lh ] = b) _> L 
t ~ T  t ~ T  

(5.3) 

{gt }t=0 is a set of  optimal policy functions. In particular, T T 
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Proof of  Claim 2." Let e = ( y , h , , b , T ) , .  {xt ,  et,Yt}Tt-~- and 
x t { t, ~ _ /1r  ~is Ct,Yt]t= r be as in the claim. Since for each t = % . . .  ,T ,  x t 

in the feasible set of the maximization exercise defining WT(y~, ht, b) 
[see (5.1) and (5.2)] we obtain after taking expectations conditional 
on h~-, 

r ! E[W~ (YT, hT, b)] hT] _ E[uT(C'r) l h~-] (5.4) 

and for t = 7 , . . . , T -  1 

E[WT(y~,ht,b) l h~] >_ 
T t 

E[ut (c ' t )  I hr] + E [ W t + l ( Y t + l ,  h t+ l ,  b) I hr] �9 (5.5) 

Adding (5.4) and (5.5) (over t = % . . . ,  T - 1) and rearranging, 

T 
T t 

t=T 
(5.6) 

Next, since for each t, xt  is a solution to the maximization exercise 
defining WT(y t ,  ht, b) we obtain equations similar to (5.4) and (5.5) 
with {xt, e ,ydL, replacing {x~,c' t, Y~ }ff-~- and equalities replacing 
inequalities. We can therefore show that 

T 

W T(y~, h . ,  b) = E [ ~  ut(ct) I h . ] .  
t=7 

(5.7) 

But since y~ = y~- = y, (5.3) follows from (5.6) and (5.7). 
Q.E.D. 

Proof of  Theorem 3.2: 

Let T,  e = (y, ht, b, T) and e I = (yl, ht, b ~, T) be as in Theorem 3.2. 
We shall prove the theorem by backward induction on the date, t. Since 
gT (y, hT , b) b > b' T , = -- = gT(Y ,  hT, b') (recall gT T is the smallest optimal 
investment at date T) the theorem holds for t = T. Suppose now that 
for some -r = 0 , . . .  , T -  1, the theorem holds for all t = - r+ 1 , . . .  ,T; 
we proceed to show that the theorem then holds for t = -r. 

To this end, suppose, per absurdum, that x = gr(y ,  h.~,b) < 
T t X I .  T t g~- ( y ,  hr,  U) = We will show that x E F~_ ( y ,  h,-, b') and that 



260 T. Mitra and Y. Nyarko: 

x is a solution to the maximization exercise defining W T ( y  t, h,-, U); 
that is, 

T ! ! W r (y ,  hr, b') = u~-(y - x) + E[W-r+t(fr(x,  r r + j ,  h-r+1, b') I h~-] . 

(5.8) 

However, x' is by definition the smallest solution to the maximization 
exercise defining W T ( y  ', h.~, b') while (5.8) implies that x is also a 
solution; this contradicts x < x ' and would complete the proof of  the 
theorem. 

T X t t t T We proceed to prove (5.8). Let {xt,  ct, Yt }t=r [resp. { t, ct, Yt}t=~-] 
{gt (', b)}T=~ - [resp. be the process generated by the policy functions T 

{gT(., b'~lT, Jt=~-] from the initial stock-history pair (y, h~-) [resp. (y', h~-)] 
at date T. We use these processes to construct two more processes 
{3?t,ct,Yt}t=r ^ T and {Jc't, et,Yt}t=~_ ^ '  ^ '  T as follows. Let At = {xt < x;} and 

! 
let A~ be the complement of At. Define ~)~- = y~-; /)~ = y~; :h = xt 
on At and :~t = xt on A~; :~ = xt on At and :~ = x~ on A~; 

Yt}t=r and {8~,9~}T r are defined from {:~t}tT=~. and {3?~}tT__r, {~t,^ T 
respectively, in the obvious way [that is, using (2.5)]. We continue via 
a sequence of claims which we prove later. 

c Claim 1: For all t > "r, A t _ I A  t = r 

Claim 2: The process {~?t, 8t ^ T , Yt}t=~- is (y, h~., b, T)-feasible. 

~:l ^1 ^/ T Claim 3: The process { t, ct, Yt}t=~- is (y', h~-, b', T)-feasible. 

Remark." Since ^' T ! x~- = x~- = x ,  c la im 3 implies that x C F~. ( y ,  h~-, b'). 

Claim 4: 

T 

T ! ^l W~ ( y ,  h~-, b') = u,-(8~) + E[  E ut(ct) I h,-] . (5.9) 
t = r + l  

Claim 5: Equation (5.8) holds. 

Proof of  Claim 1: Let t > T. On A~_ l, X t - - 1  ) X ~ _ I ;  hence from 
the monotonicity of f t -1  in x, yt = f t - l ( X t - l , r t )  >_ f t - l ( X ~ - l , r t )  

T = y~; but then from the induction hypothesis xt = 9t (Yt, ht, b) >_ 
T t t~  gt (Yt, ht, b') = z~ which occurs on A~. Hence, A~_ 1 is a subset of A r 

from which the claim follows. 
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Proof of  Claim 2." We need to check that (2 .4) - (2 .6)  hold for 
ct, Yt}t=~-. Clearly, (2.4) follows from the fact that At  E F t  and { S t , ^  ^ T 

' By construction, ~- y~- ' > the Ft-measurabil i ty of  xt  and x t. = - z~. 
Y 'r-xr '  =cr' - > 0 ; a n d f ~ 1 7 6  = f t - l ( x t _  ,r t)  

c c - x ~  : c t' _> 0; on A t _ l A t ,  ct : f t - l ( X t - l , r t )  - xt  : ct _> 0; on 
A t - I A ~ ,  ct : f t - l ( X t _ l ~ r t ) - - x t  >_ f t - l ( X t - l , r t ) - - x t  : ct >_ 0; 
and A~_IAt  = r from Claim 1. Thus, for each t = 7 - , . . . s T ,  
P(ct  > 0 I h~-) = 1 and hence (2.5) holds. Finally, since XT = b _> 
b' = x'  T, P ( A T )  = 0 so P(3CT = XT >__ b [ h~-) = 1 and (2.6) holds. 

Proof of  Claim 3." This is very similar to the proof  of  Claim 2, so we 
omit the details. 

Proof of  Claim 4: Suppose, per absurdum, that (5.9) does not hold. 
Then f rom Claim 2 of Theorem 3.1 it must be the case that 

T T 

E [ ~  ~,(4) I h.] = wMy',h.,e) > E[ z ~,(~) I h.]. 
t=T t=T 

(5.10) 

Again using Claim 2 of  Theorem 3.1, we obtain 

T T 

E[ E ~,(~,)I h~] = w r y ,  h~,b) _> Z[Z~,(~,) I h~]. 
t - - - -T  t = T  

(5.11) 

So adding (5.10) and (5.11) and rearranging terms, 

T 

E [ E ( u t ( c t )  + ut(c't) - ut(~t) - u t ( ~ ) ) h j  > O . 
t : - T  

(5 .12)  

We proceed to obtain a contradiction to (5.12). Define L = fit = 
' M = ' ' ' and c =  ' y~- - x ~ . ,  c~_ = y~_ - x  T x~- - x ~ - .  Since YT > y~- and 

x~_ > x~- by assumption, we have L > M and e > 0. Then, since u~- is 
assumed concave, 

~ . ( c . )  + u . ( c ' )  - u . ( a . )  - u . ( e ' )  = 

[u~-(L + ~) - u~-(L)] - [u~-(M + e) - u~-(M)]  < 0 .  (5 .13)  

Next, for 7- < t _< T,  since A~_IAt  = r (and hence ft = A t - l A t  t2 
c c c A t _ I A  t U A t _ l A t ) ,  one can check that (using integrals to denote 
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expectations conditional on h~-), 

fut(~t)=/A Ut(Ctt)-q'-jA Ut(Ct)-~-fA Ut(Ct) (5.14) 
t-lAt ~_IA~ t-lA~ 

and 

/ ut(&'t) = /i  ut(ct) + /A Ut(Ctt)-'~- /A Ut(C~) . (5.15) 
t-lAt . ~_IA~ t-lA~ 

Using (5.14) and (5.15), and noting that f~ - A t - l A t  - A ~ _ I A  ~ = 
A t - I A ~ ,  one can verify that 

f {u , ( c , )  - u,(e,) - ~,(~)} 
Ut(Clt) + 

= f {u~(c0 + u t ( c ' ~ )  - u t ( ~ O  - u~(~'t)} 
2A t-lA~ 

= f [ut(L + ~) - ut(L)] - [ u t ( M  + e) - u t ( M ) ]  , (5.16) 
JA 

where L ct / = = f t _ l ( X t _ l , r t ) - - x t ,  M = ct = f t - l ( X t - l , r t ) - x t  and 
i On A t - I A ~ ,  x~_ 1 > x t - 1  and x t  > x I = x t  - x t. - t, s~  L -> M and 

c _> 0. Since ut is concave the right-hand side of  (5.16) is nonpositive, 
hence 

{u t (c t )  - u t ( ~ t ) -  ~_~ �9 (5.17) ut(clt) + Ut(~lt)} 0 

From (5.13) and (5.17) [recalling that the integrals in (5.17) are condi- 
tional on h~-], we obtain a contradiction to (5.12). This completes the 
proof of Claim 4. 

Proo f  o f  Claim 5: From Claim 4 above 

T 

W~(y',h~,b I) -- u~(~ ' )+  E[E[ ~ u~(~) I h~+l] I h~]], 
t = ' r + l  

and using Claim 2 of  Theorem 3.1, 

T ^1 W f  (y' ,  h~-, b') < u~-(5~) + E[W.~+~(y~_+~, h~-+l, b') ] h~-] . (5.18) 

Combining (5.18) with (5.2) yields (5.8). Q.E.D. 
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Proof  o f  Corollary 3.1: 

Suppose the corollary is false and let m = min{t = 0 , . . . , T  [ 
X ! �9 P ( x t  > x~ I ho) > 0} a n d B  = {x,~ > m}, t h e n P ( B  I ho) > O. 

If  m = 0 then Ym = y ~  = y; otherwise m -  1 > 0 and 
P ( x m - 1  <_ ' x ,~- i  I ho) = 1 so P(y,~ < y ~  I ho) = 1. In either 

I case if A = {Ym <_ Ym} then P ( A  I ho) = 1. Using the monotonicity 
! result of Theorem 3.2 we may conclude that on A B ,  x,.~ < x,~ - 

T T t T t gm(Y,~, h,~, b) _ < g,~(Ym, hm, b). Since 9m(Y~,  h,~, b) is the smallest 
solution to the maximization exercise defining T W L (y,~, hm, b) in (5.1) 

is therefore not a solution; we may therefore mimic the and (5.2), x m 
proof of Claim 2 of Theorem 3.1 and show that (5.5) with ~- -- 0 and 
t = m [or (5.4) if m = T] holds with strict inequality on A B .  Hence, 
upon integration we may show that (5.6) holds with strict inequality, 
and therefore combining with (5.7) we obtain a contradiction to the 

X t t t T optimality of { t, ct, Y~}t=0. Q.E.D. 

Proof o f  Corollary 3.3: 

Define e" = (y, ho, x T~ , T)  where x T' is the date T investment 
of the SCI-e/-optimal process. From the Principle of Optimality (see 

X t t t ~ T  Lemma A.4 in the appendix), { t, % Yth=o is e '-optimal. It is easy to 
X t t t ~ T  see that { t, ct, Yth=o is the SCI-e'-optimal process. Since P ( J T  -- > 

0 I h0) = 1 we may apply Corollary 3.2 to the SCI-e- and -e '-optimal 
processes {xt ,  ct, T x '  J ~ t lT  Yt}t=O and { t, ct, Ytft=O, respectively, to obtain 

! 
P(x t  <_ x t [ h0) = 1 for each t. Q.E.D. 

Proof  of  Proposition 3.1: 

The function T gt (Y, ht, b) is the solution to the maximization exer- 
cise in (5.1) and (5.2). If {rt}T=0 is independent then the objective 
function on the right-hand side of (5.2) involves an unconditional 
expectation and is therefore independent of the partial history, ht; if, 
in addition, the terminal stock, b, is a constant then the constraint set 
FT(y, hi, b) is independent of the partial history hr. Hence, T 9t (Y, ht, b) 
is independent of ht. Q.E.D. 

Proof  of  Theorem 4.1: 

Fix an initial stock-history pair (y, ho) E ]R+ x f~0; we shall use 
Eo to denote expectations conditional on h0. First, we show that the 
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l i m i t  process is feasible. For fixed t, x T is Ft-measurable, so (2.4) 
holds. Next, since f t - 1  is continuous, ct = f t - l ( ~ C t - l , ? ~ t ) -  x t  = 

limT--,o~ f t - l ( x T 1 ,  r t)  -- x T = limT-_.~ C T _> 0; it is therefore clear 
that all the conditions in (2.5) hold. Hence, the limit process is feasible. 

Let {kt}t~ be the pure accumulation process from initial stock y 
[defined in (2.1)] at date 0, and define 

N 

a = inf lim Eo E [ u t ( k t )  - ut(ct)] , 
N----~ oo 

t = 0  

(5.19) 

where the infimum is taken over all processes {xt5 ct, Yt}t~=o that are 
feasible from (y, h0). Note that the limit in (5.19) is either infinite or 
convergent since for all t, P[ut (k t )  - ut(ct)  ~ 0 I h0] = 1. From 
Condition (A.1), a is finite. We now show 

Claim 1: The limit process attains the infimum in (5.19). 

Proo f  o f  Claim 1: Suppose, per absurdum, that the limit process does 
not attain the infimum in (5.19); then for some c > 0, 

N 

lira Eo E [ u t ( k t )  - ut(~t)] >_ a + r (5.20) 
N---* o o  5 

t = O  

so for some N ' > 0, 

N '  

Eo - >__ + (5.21) 
t = 0  

Recall that for each T = 0,1, ; x  T c T T T . . . .  t t ,  t ,Yt  }t=0 is the SCI- 
(y, h0, 0, T)-optimal process. Since limT--,~ c T = ~t, we may use the 
Dominated Convergence Theorem (since c T <_ kt for each T)  to show, 
using (5.21), that for some T '  >_ N ' ,  

N t 

e T' . Eo E [ u t ( k t )  - ut(cTt )] >_ a + -~ for all T >_ (>_ N ' )  (5.22) 
t--O 

As Eo[ut (k t )  - ut(cT)] > 0 for each t and T,  (5.22) implies 

T 

6 T !  . Eo E [ u t ( k t )  - ut(cT)] >_ a + ~ for all T _> 
t = O  

(5.23) 
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Next, from the definition of c~ as an infimum we may choose a 
sequence of processes {:~T, ~T = T ~  t ,Yt ~t=0, T = 1, 2, . . . .  each feasible 
from (y, h0) for the infinite-horizon model, such that for each T, 

N 

lim Eo ut(kt) - ut(~tT)] < c~ + ~ . 
N---*cc 

t = 0  

(5.24) 

But for all t and T,  Eo[ut(kt) - ut(~T)] >_ 0, hence from (5.24), 

T 
E 

Eo Z [ u d k t )  - ut(~T)] < o~ + ~ for all T .  
t----O 

(5.25) 

It is clear that -fff7 T c T  -T T t ~, t ,Yt }t=0 is (y, ho,O,T)-feasible; thus, since 
X T T T I T  { t , ct ,Yt h=o  is (y, ho, 0, T)-optimal, 

T 

Eo Z [ u t ( k t )  - ut(cT)] < c~ + ~ for all T .  
t = 0  

(5.26) 

Finally (5.23) and (5.26) imply that for T _ T' ,  o~ + (r < c~ + (c/T); 
so taking limits as T ---+ oc and using c > 0 leads to a contradiction 
which proves Claim 1. 

To complete the proof of Theorem 4.1 we need to show that the 
limit process is optimal; suppose, per absurdum, that this is not the 

^ ^ ^ O ~  case and, in particular, there is a process {xt, ct, Yt}t=o feasible from 
the initial stock-history pair (y, h0) such that for some N "  < cc and 
some J > 0, we have for all N > N "  

N 

Eo Z [ u t ( O t )  - ut(5t)] >_ J ,  
t = 0  

(5.27) 

SO 

N N 

o < J E o  - - E o  - 

t = 0  ~=0  

(5.28) 

Taking limits as N ~ cc in (5.28) and using Claim 1, 

N 

0 < J < a -  lim E o Z [ u d k 0 - u t ( 6 t ) ] .  
N---~ oo 

t = 0  

(5.29) 
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But from the definition of a the limit in (5.29) is no less than oz; so 
(5.29) implies 0 < J < 0, a contradiction. Thus the limit process is 
optimal. Q.E.D. 

Proof of Theorem 4.4: 

We shall consider all finite-horizon models below as having terminal 
stock, b = 0; so from Proposition 3.1, we may write 9tT(Y, ht, b) = 
gT(y); we may also, for a similar reason, write WT(y, ht, b) = WT(y) 
where WT(y) is defined in (5.1) and (5.2). 

Fix a finite-horizon, T.  We will first show by backward induction 
on the date, t, that for 0 < t < T, 

5WtT (y) T+I = Wt+ 1 (Y) �9 (5.30) 

w T+lr  First, 5WT(y) = 5. 5Tu(y) = T+I tY), SO (5.30) holds for t = T. 
Next, suppose that (5.30) holds for some t = 7- with 0 < 7- _< T; then, 
using (5.2) and the induction hypothesis, 

5WT_I(y) = 5[ max {U-au(y -- x) + EWT(f(x,r))}] (5.31) 
xe[o,u] 

= max {Uu(y - x) + FWTT++ll(f(x ,r))} (5.32) 
x~[O,v] 

~- w T +  l(y) (5.33) 

(where the expectation is over r,  which has the common distribution of 
the {rt} process, which is assumed i. i. d.). This shows that (5.30) holds 
for t = 7- - 1. Hence, by induction, (5.30) holds for all t = 0, . . . ,  T. 

Since, from (5.30), the expressions to be maximized in (5.31) and 
(5.32) differ by only a constant factor, 5, their sets of solutions must be 
identical; but notice that 9T_l(y) [resp., 9T+l(y)]  is the supremum of  
the set of  solutions to the maximization in (5.31) [resp. (5.32)], hence 
gT_l(y ) = gT+l(y) for each 7- = 1 , . . . ,  T; taking limits as T --~ c~ 
results in 

g~-l(Y) = lim 9T~_l(y)= lim 9~+1(y)-_ 9~(y) (5.34) 
T - - +  ~ T - - +  o c  

from which the theorem follows. Q.E.D. 
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6. Appendix 

We now state some results that were used in the proofs. Let A be 
a compact subset of a metric space with metric #, and define 2 A to be 
the set of all non-empty closed subsets of A. Given any two sets C 
and D in 2 A, we define the Hausdorff metric, h, on 2 A, by 

h(C, D) = max{sup p(c, D), sup(d, C)} , 
cEC dED 

where it(c, D) = infdcD #(c, d) and #(d, C) = inf~Ec p(d, c). 
The Borel field on 2 A, denoted by B(2A), is the smallest sigma 

field on 2 A containing all sets open with respect to h. Let S be a Borel 
subset of a complete and separable metric space and let B(S) be its 
Borel sigma field. A correspondence F : S --* 2 A is measurable [and 
we use the notation F E B(S)/B(2A)], if for each set M E B(2A), 
F - I ( M )  = {s : F(s) N M is non-empty} E B(S). We may now state 
an important selection theorem. 

Lemma A.1 (Measurable Selection Theorem): 
Let S be a Borel subset of a complete and separable metric space. 
Suppose H : S • A --+ IR 1 and 
(i) A is a compact subset of IR1; A(.) is a correspondence such that 

for all s E S, A(s) E 2 A and A(.) E B(S) /B(2A);  
(ii) H(s, a) is Borel measurable in s, for each fixed a in A; 
(iii) H(s, a) is continuous in a, for each fixed s in S; 
(iv) H(s, a) is uniformly bounded in (s, a). 
Then (a) M(s) = max{H(s , a )  : a E A(s)} is Borel measurable; 
(b) there exists a Borel measurable function, g : S ~ A, such that for 
all s in S, g(s) E A(s) and H(s,g(s)) = max{H(s,  a) : a E A(s)}; 
(c) the function 9 above may be chosen so that g(s) = min{a ~ E A(s) : 
H(s, a') = maxaEn(s) H(s, a)}. 

Proof: See Furukawa (1972, Theorem 4.1, p. 1619). Note that the 
selection used in that paper is the lexicographical maximum, which on 
the real line reduces to the simple maximum of a set of real numbers. It 
is clear that one could very easily replace the lexicographic maximum 
with the lexicographic minimum in the Furukawa selection result, from 
which (c) above follows. Q.E.D. 

Recall that the correspondence F T was defined in (2.3) with domain 
of definition D T, the set of date t admissible tuples; also recall that 
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MT is the set of possible terminal stocks for the T-horizon model [see 
Section 2.b)]. 

Lemma A.2: Fix a finite time horizon T, a t = 07.. �9 T, and a terminal 
stock b E MT. There exists an Ft-measurable random variable, bt(ht), 
such that for (y, ht, b) E DTt, T {x b(ht) x F t (y, ht~ b) = I <- <- Y}" 

Proof: We shall prove the 1emma by backward induction on the 
date, t. Since b is FT-measurable we may write b = b(hT); hence 
FTT(y, hT, b) = {x [ b(hT) <_ x < y} so the lemma holds for t = T. 

Next suppose the lemma holds for some date t = "r § 1 where 
0 < -r < T; we proceed to show that it then holds for t = "r. Define 

br = inf{z > 0 I g[f.~(z,rr >_ br+l (hr+ l )  I hr] = 1} ,  (6.1) 

where br+l is obtained from the induction hypothesis. It is clear that 
FT(y, h~-, b) = {x I b~-(h~-) < x < y}; it remains only to show that 
b~-(h~-) is F~--measurable. However, for each a _> 0, 

b-~l(a, c~) = {h~- E Xi~=oft~ [ P[f.~(a, rT+l) >_ b~-+l(h~-+l) I h~-] = 1 . 

(6.2) 

Since the conditional probability in (6.2) is an F~--measurable random 
variable, b~-l([a, c~)) E F~- so b~-(h.~) is FT-measurable. 

Q.E.D. 

Lemma A.3: Let T, t, and b be as in Lemma A.2. Then 
(a) the correspondence FT(y, ht, b) is continuous in y for fixed ht E 

Xt=o t ; 
(b) for each Ft-measurable random variable y(ht), taking values in 

some compact interval A of JR+ such that (y(ht), ht, b) E DTt for 
all ht E Xt=0~/,  FT(y(ht), ht, b) E Ft/B(2A). 

Proof." From Lemma A.2 it is easy to show that (a) holds. Next, note 
that from Lemma A.2, if y(ht) is as in (b) above, 

FT(y(ht), ht, b) = FTt,l(y(ht), ht~ b) M FTt,2(y(ht), ht, b), (6.3) 

where rTt,l(y(ht), ht, b) = {x I b(ht) < x} and rTt,2(y(ht), ht, b) = 
{x I 0 < x < y(ht)}. To prove part (b) of the lemma it suffices to 
show that FTt,1 and F Tt,2 are Ft-measurable since the intersection of 
two measurable correspondences is a measurable correspondence (see 
Rockafellar, 1969, Corollary 1.3, p. 9). 
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Let C be any closed and bounded subset of IR+ and let -6 = sup C 
and c = inf C. Then 

(I~tT1)-a(c) = {ht : ['Tt,l(ff(ht), ht, b) n C is non-empty} 

= {ht :-d >_ bt(ht)} , (6.4) 

(FtT,2)-I(c) = {ht : FTt,2(y(ht), ht, b) n C is non-empty} 

= {ht : c_ < y(ht)} �9 (6.5) 

As bt(ht) and y(ht) are both Ft-measurable, the inverses in (6.4) 
and (6.5) both belong to Ft. If C is not a closed set one or both of 
the weak inequalities in (6.4) and (6.5) become strict inequalities; but 
even in this case the inverses still belong to Ft. Since y(ht) is assumed 
uniformly bounded it suffices to consider C bounded. Hence, F T and t,1 
F r , and therefore their intersection, F T, are Ft-measurable. t ,2 

Q.E.D. 

Lemma A.4 (Principle of  Optimality): 
1 T + 1  Let e = (y, ho, b, T + 1) be an admissible tuple and let {xt, ct, ~tft=o 

be an e-optimal process. Then {xt,  et, Yt}T=o is (y, ho, XT, T)-optimal. 

Proof." Suppose, per absurdum, that the lemma is false. Then there 
exists a (y, h0, xT,T)-feasible process, {2t, ~t ^ T , Y t } t = O  s u c h  that 

T T 

E[~-~. ut(&t) l ho] > E [ ~  ut(ct) l ho] . 
t = 0  t = 0  

(6.6) 

[ ~ t  ~t ~ t ~ T + l  Construct a process tx t ,  ct, Yt$t=o from (y, ho) as follows: set y~ = y, 
x~ = xt for 0 _< t _< T and x~+ 1 = b; then define the {c~, ~yt~t=otlT+l 

processes from {x~} T+I in the obvious manner [that is, using (2.5)]. 
Since JT = xT >_ XT, Y~T+I > YT+I > b = x~+ 1 and therefore 

I--I  ~,' ~ t l T + l  one may check that tx t ,  ct, Yt]t=o is (y, h0, b, T + 1)-feasible. Since 
@+1 > CT+I, we may use (6.6) to show that 

T + I  T + I  

E[ E ut(e't) l ho] > E[ E ut(ct) l ho] , 
t = 0  t = 0  

(6.7) 

which contradicts the optimality of T+I { X t  ~ Ct , Y t  } t=O " Q.E.D. 



270 Mitra and Nyarko: Optimal Processes 

References 

Berge, C. (1963): Topological Spaces. London: Oliver and Boyd. 
Blackwell, D. (1965): "Discounted Dynamic Programming." Annals of Math- 

ematical Statistics 36: 226-235. 
Bhattacharya, R., and Majumdar, M. (1981): "Stochastic Methods in Math- 

ematical Economics: A Review." In Statistics, Applications and New 
Directions, Proceedings of the Indian Statistical Institute Golden Jubilee 
International Conference, edited by J.K. Ghosh and J. Roy. Calcutta: 
Indian Statistical Institute. 

Brock, W. A., and Gale, D. (1969): "Optimal Growth Under Factor Augment- 
ing Progress." Journal of Economic Theory 1: 229-243. 

Brock, W., and Mirman, L. (1972): "Optimal Growth Under Uncertainty." 
Journal of Economic Theory 4: 479-513. 

Chichilnisky, G. (1981): "Existence of Optimal Savings Policies with Imper- 
fect Information and Non-convexities." Journal of Mathematical Econom- 
ics 8: 1-14. 

Chung, K. (1974): A Course in Probability Theory. New York: Academic Press. 
Dechert, W.D., and Nishimura, K. (1983): "A Complete Characterization 

of Optimal Growth Paths in an Aggregated Model with Non-concave 
Production Function." Journal of Economic Theory 31:332-354. 

Furukawa, N. (1972): "Discounted Dynamic Programming on Compact Metric 
Spaces." Annals of Mathematical Statistics 43: 1612-1622. 

Gale, D. (1967): "On Optimal Development of a Multi-Sector Economy." 
Review of Economic Studies 34: 1-18. 

Maitra, A. (1968): "Discounted Dynamic Programming in Compact Metric 
Spaces." Sankhya, Ser. A, 30: 211-216. 

Majumdar, M. (1975): "Some Remarks on Optimal Growth with Intertem- 
porally Dependent Preferences in the Neoclassical Model." Review of 
Economic Studies 42: 147-153. 

Majumdar, M., Mitra, T., and Nyarko, Y. (1989): "Dynamic Optimization 
Under Uncertainty: Non-Convex Feasible Set." In Joan Robinson and 
Modern Economic Theory, edited by G. Feiwel. New York: New York 
University Press. 

Mirman, L., and Spulber, D. (Eds.) (1982): Essays in the Economics of 
Renewable Resources. Amsterdam: North-Holland. 

Rockafellar, R. T. (1969): "Measurable Dependence of Convex Sets and Func- 
tions on Parameters." Journal of Mathematical Analysis and Applications 
28: 4-25. 

Addresses of authors: Professor Tapan Mitra, Department of Economics, 
College of Art and Sciences, Cornell University, Uris Hall, Ithaca, NY 14853, 
USA; Yaw Nyarko, Department of Economics, New York University, New 
York, NY 10003, USA. 


